

## Groundwater

- Groundwater takes $0.62 \%$ of the total water in the hydrosphere
- $0.31 \%$ of the total water in the hydrosphere has depth less than 800 m
- sand, gravel, and sandstones $\rightarrow$ good aquifers
- Limestone and shale that have caverns, fissures or faults can also be considered as good aquifers.
- Clay's ability to transmit water is very poor due to the very small particle sizes ( $<0.0004 \mathrm{~mm}$ ).


## AIT Water Supply \& Urban Drainage By Zerihun Alemayehu

## Subsurface Distribution of Water

| Unsaturated zone | Ground surface | -Large fluctuation in water Content due to plant transpiration |
| :---: | :---: | :---: |
|  | Soil water zone |  |
|  | Vadose zone |  |
|  | Capillary zone | - GWT |
| Saturated zone | Zone of saturation | All voids are filled with water Under hydrostatic pressure |

Aquifer is a water-bearing formation that is saturated and that transmits large quantities of water.

## AQUIFER PARAMETERS

- Porosity: ratio of volume of voids to total volume

$$
n=\frac{V t-V t}{V t}
$$

- Vt is total volume of soil and Vs is the volume of solids
- Specific yield(Sy): amount of water that will drain under the influence of gravity

$$
s y=\frac{V d}{V t}
$$

- Specific retention(Sr): part that is retained as a film on rock surfaces and in very small openings.

$$
S r=\frac{V r}{V t} \quad n=S y+S r
$$

AAiT Watar suppy suman Drainage By Zerihun Alemayehu

## AQUIFER PARAMETERS

- Storage coefficient (S): the volume of water that an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head

$$
S=\frac{\text { Volume of water }}{(\text { Unit area)(unit head change) }}
$$

- Hydraulic gradient ( $d h / d x$ ): the slope of the piezometric surface or water table line in $\mathrm{m} / \mathrm{m}$. The magnitude of the head determines the pressure on the groundwater to move and its velocity.


## AQUIFER PARAMETERS

- Hydraulic conductivity $(K)$ : ratio of velocity to hydraulic gradient, indicating permeability of porous media.

$$
\mathrm{K}=\frac{\mathrm{QdL}}{\mathrm{Adh}}
$$

- Transmissivity: the capacity of an aquifer to transmit water
- measure of how easily water in a confined aquifer can flow through the porous media.

$$
\mathrm{T}=\mathrm{Kb}, \quad \mathrm{~b}=\text { saturated thickness }
$$

AAiT Water sump) Uuman Drainase
By Zerihun Alemayehu

## AQUIFER TYPES

- Unconfined and confined aquifers


AAiT
Water Supply \& Urban Drainage By Zerihun Alemayehu

## Groundwater flow

- Groundwater flows in the direction of decreasing head.
- Equipotential lines $\rightarrow$ lines showing points having equal pressure.
- Flow direction is perpendicular to equipotential lines



## AAiT

## Velocity of GW

- Velocity can be determined by Darcy's law $\rightarrow \mathrm{V}=\mathrm{kS}$
- Darcy law :Q through porous media is proportional to the head loss and inversely proportional to the length of the flow path.


$$
\begin{aligned}
& \mathrm{V}=\frac{\mathrm{Q}}{\mathrm{~A}}=-\mathrm{K} \frac{\Delta \mathrm{~h}}{\mathrm{~L}} \\
& \text { or } \\
& \mathrm{V}=-\mathrm{K} \frac{\mathrm{dh}}{\mathrm{dL}} ; \text { for very small element }
\end{aligned}
$$

$\mathrm{K}=$ hydraulic conductivity and $\Delta \mathrm{h}$ is the head loss
AAiT
Water Supply \& Urban Drainage By Zerihun Alemayehu

## Determination of K

## Laboratory methods

- Constant head permeameter: $\quad K=\frac{V L}{A t h}$
$\mathrm{V}=$ volume water flowing in time t through of area A , length
L , and with constant head h .
- Variable head permeameter :

$$
K=\frac{r^{2} L}{r_{c}^{2} t} \ln \left(\frac{h_{1}}{h_{2}}\right)
$$

$\mathrm{r}=$ radius of the column in which the water level drops
$\mathrm{r}_{\mathrm{c}}=$ radius of the sample
$h_{1}, h_{2}$ are heads at times $t_{1}$ and $t_{2}$, respectively
$\mathrm{t}=\mathrm{t}_{2}-\mathrm{t}_{1}$
AAiT Watars ivivy Uuban Drainage
By Zerihun Alemayehu


A


B

Fig. 1 Determination of the hydraulic conductivity with a permeameter: (a) constant head permeameter, and (b) falling head permeameter.

## AAiT

Water Supply \& Urban Drainage By Zerihun Alemayehu

## Determination of K...

## Field Methods

- Pumping test: constant removal of water from a single well and observations of water level declines at several adjacent wells.
- This is the most accurate way
- For anisotropic aquifers, the combined horizontal hydraulic conductivity:

$$
K=\frac{\sum K_{i} Z_{i}}{\sum Z_{i}}
$$

- Where, $\mathrm{K}_{\mathrm{i}}=\mathrm{K}$ in layer i ; $\mathrm{Z}_{\mathrm{i}}=$ thickness of layer I

AT Water Supply \& Urban Drainage By Zerihun Alemayehu

## Determination of K...

## Field Methods...

- Slug test or piezometer test: the simplest method
- some volume of water is taken out from the piezometer and the subsequent rise of the water back to its original position is recorded in time.

$$
K=\frac{r_{i}^{2}}{2 L t_{o}} \ln \left(\frac{L}{r_{o}}\right)
$$

$\circ r_{i}$-inside radius,

- L- the length of the screen section,
- $\mathrm{r}_{0}$-the outside radius
- characteristic time interval

AAiT Water suppyy Uuban Drainage


## Hydraulics of water wells

- Well: hydraulic structure utilized to access waterbearing aquifers
- Allows estimation of aquifer hydraulic properties
- Provides direct access to ground water conditions

1) Sampling
2) Testing
3) Resource Extraction
4) Environmental Restoration


## Hydraulics of water wells

- Aquifer test: studies involving analyzing the change, with time, in water levels in an aquifer caused by withdrawals through wells.
- Drawdown / cone of depression: is the difference between the water level at any time during the test and the original position.

Ground


## STEADY STATE CONDITION

- Cone of depression remains in equilibrium
- The water table is only slightly inclined
- Flow direction is horizontal
- Slopes of the water table and the hydraulic gradient are equal
- Aquifer: isotropic, homogeneous and infinite extent
- Well fully penetrating the aquifer


## Steady Radial Flow to a Well-Confined

For horizontal flow, Q at any radius r equals, from Darcy's law,

$$
Q=-2 \Pi r b K \frac{d h}{d r}=-2 \Pi r T \frac{d h}{d r}
$$



## Steady Radial Flow to a Well-Confined

- Integrating after separation of variables, with $h=h_{w}$ at $r=r_{w}$ at the well, yields Thiem Equation.

$$
Q=2 \Pi T \frac{h-h_{w}}{\ln \frac{r}{r_{w}}}
$$

- Near the well, transmissivity, $T$, may be estimated by observing heads $h_{1}$ and $h_{2}$ at two adjacent observation wells located at $r_{1}$ and $r_{2}$, respectively, from the pumping well.

$$
\frac{\ln \frac{r_{2}}{r_{1}}}{\left(h_{2}-h_{1}\right)}
$$

## Steady Radial Flow to a Well-Unconfined

 - radial flow in an unconfined, homogeneous, isotropic, and horizontal aquifer yields:

## Steady Radial Flow to a Well-Unconfined

- integrating, the flow rate in a unconfined aquifer from 2 to 1

$$
Q=\Pi K \frac{\left(h_{2}{ }^{2}-h_{1}^{2}\right)}{\ln \frac{r_{2}}{r_{1}}}
$$

- Solving for K, $\quad K=\frac{Q}{\Pi\left(h_{2}{ }^{2}-h_{1}{ }^{2}\right)} \ln \frac{r_{2}}{r_{1}}$


## RADIUS OF INFLUENCE OF STEADY STATE PUMPING WELLS



AT Water Supply \& Urban Drainage By Zerihun Alemayehu

## Example

- A 0.5 m well fully penetrates an unconfined aquifer of 30 m depth. Two observation well located 30 and 70 m from the pumped well have drawdowns of 7 m and 6.4 m , respectively. If the flow is steady and $\mathrm{K}=74 \mathrm{~m} / \mathrm{d}$
- what would be the discharge
- Estimate the drawdown at the well


## Solution

- For unconfined well Q is given as
$\mathrm{h}_{1}=30-7=23 \mathrm{~m}$, and $\mathrm{h}_{2}=30-6.4=23.6 \mathrm{~m} \quad \ln \frac{r_{2}}{r_{1}}$
$\mathrm{r}_{1}=30 \mathrm{~m}$ and $\mathrm{r}_{2}=70 \mathrm{~m}$

$$
Q=\Pi \times 74 \frac{\left(23.6^{2}-23^{2}\right)}{\ln \frac{70}{30}}=7671.54 \mathrm{~m}^{3} / d a y
$$

AI Water Supply \& Urban Drainage By Zerihun Alemayehu

## SOLUTION

- Drawdown at the well,
- using the $\mathrm{h}_{1}=23 \mathrm{~m}$ and $\mathrm{r}_{\mathrm{w}}=0.5 \mathrm{~m} / 2=.25 \mathrm{~m}$, we have hw

$$
Q=\Pi K \frac{\left(h_{1}{ }^{2}-h_{w}{ }^{2}\right)}{\ln \frac{r_{1}}{r_{w}}}=\Pi \times 74 \frac{\left(23^{2}-h_{w}{ }^{2}\right)}{\ln \frac{30}{0.25}}=7671.54 \mathrm{~m}^{3} / \text { day }
$$

Solving for hw, we have $\mathrm{h}_{\mathrm{w}}=19.26 \mathrm{~m}$
So the drawdown would be $30.0-19.26=10.74 \mathrm{~m}$

## Example

- Design a tube well for the following data
- Yield required $=0.1 \mathrm{~m}^{3} / \mathrm{sec}$
- Thickness of confined aquifer $=25 \mathrm{~m}$
- Radius of confined aquifer $=250 \mathrm{~m}$
- Permeability coefficient $=70 \mathrm{~m} /$ day
- Drawdown at the well $=6 \mathrm{~m}$


## Solution

- For confined aquifer Q is given by $Q=2 \Pi b K \frac{h-h_{w}}{\ln \frac{r}{r}}$
- Taking between the well and at the radius of influence( R ) we have
- $\mathrm{h}-\mathrm{h}_{\mathrm{w}}=6 \mathrm{~m}$
- $\mathrm{b}=25 \mathrm{~m}$
- $\mathrm{R}=250 \mathrm{~m}$
$Q=0.1 \mathrm{~m}^{3} / \mathrm{sec}=2 \Pi \times 25 m \times\left(\frac{70 \mathrm{~m} / \text { day }}{86400 \mathrm{sec} / d a y}\right) \frac{6 m}{\ln \frac{250}{r_{w}}}$
Solving for $\mathrm{r}_{\mathrm{w}}$, we get $\mathrm{r}_{\mathrm{w}}=0.12 \mathrm{~m}$ or 12 cm
Thus, diameter of the well is 24 cm or 25 cm
AAiT Watars wivens Uuman Drainage
By Zerihun Alemayehu


## Transient or unsteady state condition

Assumptions:

- The aquifer is homogenous, isotropic, uniformly thick, and of infinite areal extent
- Prior to pumping the piezometric surface is horizontal
- The fully penetrating well is pumped at constant rate
- Flow is horizontal within the aquifer
- Storage within the well can be neglected
- Water removed from storage responds instantaneously with a declining head


## Transient or unsteady state condition

- The governing equation in plane polar coordinates is:

$$
\frac{\partial^{2} h}{\partial r^{2}}+\frac{1}{r} \frac{\partial h}{\partial r}=\frac{S}{T} \frac{\partial h}{\partial t}
$$

Where, $\mathrm{h}=$ head
$\mathrm{r}=$ radial distance
$\mathrm{S}=$ storage coefficient
$\mathrm{T}=$ transmissivity

- Solution methods to solve the governing equation:

Theis and Cooper-Jacob methods

## AIT Water Supply \& Urban Drainage <br> By Zerihun Alemayehu

## Theis Method

Theis assumed the following:

- T is constant during the test to the limits of the cone of depression
- The water withdrawn from the aquifer is entirely from the storage and discharged with the decline in head.
- The discharging well penetrates the entire thickness of the aquifer.
- the diameter of the well is small relative to the pumping rate so that the storage in the well is negligible.


## AAiT

Water Supply \& Urban Drainage By Zerihun Alemayehu

## Theis Method...

- Theis solution is written as:

$$
s^{\prime}=\frac{Q}{4 \Pi T} \int_{u}^{\infty} \frac{e^{-u}}{u} d u
$$

- The integral in the Theis equation is written as $W(u)$ : $W(u)=-0.5772-\ln (u)+u-u 2 / 2 \cdot 2!+u 3 / 3 \cdot 3!-u 4 / 4 \cdot 4!+\ldots$
- Therefore:

$$
s^{\prime}=\frac{Q}{4 \Pi T} W(u) \quad u=\frac{r^{2} S}{4 T t}
$$

$s^{\prime}=$ drawdown, $W(u)=$ well function, $Q=$ discharge at the well, $\mathrm{S}=$ storage coefficient, $\mathrm{T}=$ transmissivity, $\mathrm{t}=$ time

[^0]
## Theis Method...

## - Procedure:

- Plot the type curve: $W(u)$ vs. $u$ or $1 / u$ and on a log-log paper
- Plot the observed data: $\mathrm{s}^{\prime}$ vs. $\mathrm{r}^{2} / \mathrm{t}$ or $\mathrm{t} / \mathrm{r}^{2}$ on a transparent log-log paper
- Superimpose the observed plot on the type curve
- Adjust the observed plot in such a way that most of the points lie on the type curve.
- Select one matching point and take the corresponding readings for $W(u), u, s^{\prime}$ and $r^{2} / t$.
- Compute T from the Theis equation: $T=\frac{Q}{4 \Pi s^{\prime}} W(u)$
- Determine $S$ from the equation for $\mathrm{u}: S=4 T u \frac{1}{r^{2} / t}$

A巩 Water Supply \& Urban Drainage By Zerihun Alemayehu

$W(u)=-0.5772-\ln (u)+u-u 2 / 2 \cdot 2!+u 3 / 3 \cdot 3!-u 4 / 4 \cdot 4!+\ldots$

## AAT Water Supply \& Urban Drainage By Zerihun Alemayehu



AAiT Water Supply \& Urban Drainage By Zerihun Alemayehu

## Theis Method...

- For a known S and T, we can compute $\boldsymbol{s}^{\prime}$ directly at a given $r$ from the well as a function of time:
- First compute $u=r^{2} \mathrm{~S} /(4 T t)$
- Then, calculate for W(u)
- Finally, $s^{\prime}=\frac{Q}{4 \Pi T} W(u)$


## Cooper-Jacob Method

- Theis equation applies to all times and places if the assumptions are met but Jacob's method applies only under certain additional equations.
- Facts:
- At the start of withdrawals, the entire cone of depression has unsteady shape
- After some time, the cone of depression begins to have a relatively steady shape
- The Jacob method is applicable only to the zone in which steady shape conditions prevail or to the entire cone only after steady conditions have developed


## Cooper-Jacob Method...

- Cooper and Jacob noted that for small values of $r$ and large values of $t$, the parameter $u=r^{2} S / 4 T t$ becomes very small so that the infinite series can be approximated by:
- W(u) = - $0.5772-\ln (u)$ (neglecting higher terms)

$$
s^{\prime}=\frac{Q}{4 \Pi T}(-0.5772-\ln u)
$$

- Rearranging the above equation

$$
s^{\prime}=\frac{2.3 Q}{4 \Pi T} \log \left(\frac{2.25 T t}{r^{2} S}\right)
$$

AAiT wate suppy suban Drainage
By Zerihun Alemayehu

## Cooper-Jacob Method...

- plot of $s^{\prime}$ vs. $\log (\mathrm{t})$, projection of the line back to $\mathrm{s}^{\prime}=$ 0 , where $t=t_{0}$ yields the following relation:

$$
0=\frac{2.3 Q}{4 \Pi T} \log \left(\frac{2.25 T t_{0}}{r^{2} S}\right) \rightarrow S=\frac{2.25 T t_{0}}{r^{2}}
$$



A/T Water Supply \& Urban Drainage By Zerihun Alemayehu

## Cooper-Jacob Method...

- Replacing $s$ by $\Delta s$, where $\Delta s$ is the drawdown difference per unit log cycle of $t$ :

$$
T=\frac{2.3 Q}{4 \Pi \Delta s^{\prime}}
$$

- The Cooper-Jacob method first solves for $T$ and then for $S$ and is only applicable for small values of $u(u<$ 0.01 ).


## Example

A fully penetrating artesian well is pumped at a rate $\mathrm{Q}=1600 \mathrm{~m}^{3} / \mathrm{d}$ from an aquifer whose S and T values are $4 \times 10^{-4}$ and $0.145 \mathrm{~m}^{2} / \mathrm{min}$, respectively.

- What is the drawdown at a distance of 100 m after a) 1 hr and b) 1 day of pumping?
- Estimate the radius of influence after 1 h and 1 day of pumping

By Zerihun Alemayehu

## Solution

- For $\mathrm{t}=1 \mathrm{hr}=60 * 60=3600 \mathrm{sec}$
- First calculate u
$\circ \mathrm{u}=\mathrm{r}^{2} \mathrm{~S} /(4 \mathrm{Tt})=100^{2} \times 4 \times 10^{-4} /(4 \times 0.145 / 60 \times 3600)=$ 0.1149
- Read/ calculate W(u)=1.698
- Thus, the drawdown becomes
- $\mathrm{s}=1600 / 86400 * 1.698 /(4 \times \pi \times 0.145 / 60)=1.035 \mathrm{~m}$


## SOLUTION....

- For $\mathrm{t}=1$ day $=86400 \mathrm{sec}$
- First calculate u
$\circ u=r^{2} \mathrm{~S} /(4 \mathrm{Tt})=100^{2} \times 4 \times 10^{-4} /(4 \times 0.145 / 60 \times 86400)=$ 0.00479
- Read/ calculate W(u)=4.769
- Thus, the drawdown becomes

○ $\mathrm{s}=1600 / 86400 * 4.769 /(4 \times \pi \times 0.145 / 60)=2.908 \mathrm{~m}$

## SOLUTION

- Determine the radius of influence
- We may use Jacob's formula to determine the radius of influence

$$
S=\frac{2.25 T t_{0}}{r^{2}}
$$

For time $\mathrm{t}=1 \mathrm{hr}=3600 \mathrm{sec}$

$$
\mathrm{r}^{2}=\frac{2.25 \mathrm{Tt}_{\mathrm{o}}}{\mathrm{~S}}=\frac{2.25 \times 0.145 / 60 \times 3600}{4 \times 10^{-4}}=48937.5 \mathrm{~m}^{2}
$$

Thus, the radius of influence, $\mathrm{r}=221.21 \mathrm{~m}$

## AI Water Supply \& Urban Drainage By Zerihun Alemayehu

## Solution

For time $\mathrm{t}=1$ day $=86400 \mathrm{sec}$

$$
\mathrm{r}^{2}=\frac{2.25 \mathrm{Tt}_{\mathrm{o}}}{\mathrm{~S}}=\frac{2.25 \times 0.145 / 60 \times 86400}{4 \times 10^{-4}}=1174500 \mathrm{~m}^{2}
$$

Thus, the radius of influence, $\mathrm{r}=1083.74 \mathrm{~m}$

## Well Hydraulics

A well is pumped at a rate of $0.75 \mathrm{~m}^{3} / \mathrm{min}$. at an observation well 30 m away, the drawdowns were noted as a function of time as shown below:

| t, <br> days | $\mathbf{s}, \mathbf{m}$ | t, days | $\mathbf{s , ~ m}$ | t, days | $\mathbf{s , ~ m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.75 | $\mathbf{6}$ | 3.45 | 30 | 7.47 |
| 2 | 1.3 | 8 | 4.02 | 40 | 8.24 |
| 3 | 1.9 | 10 | 4.57 | 60 | 9.34 |
| 4 | 2.45 | $\mathbf{1 5}$ | 5.6 | 80 | 10.1 |
| 5 | 3 | 20 | 6.37 | $\mathbf{1 0 0}$ | 10.66 |

Determine the values of T and S using Cooper-Jacob's method.
AAIT Water Supply \& Urban Drainage

## Solution



## SOLUTION...

- From the graph we have to $=72 \mathrm{~min}$ and $\Delta \mathrm{s}=5.3 \mathrm{~m}$ - And $\mathrm{Q}=0.75 \mathrm{~m}^{3} / \mathrm{min}$ and $\mathrm{r}=30 \mathrm{~m}$
- Thus,

$$
\begin{gathered}
T=\frac{2.3 Q}{4 \Pi \Delta s^{\prime}}=\frac{2.3 \times 0.75}{4 \pi \times 5.3}=0.0259 \mathrm{~m}^{2} / \mathrm{min} \\
S=\frac{2.25 T t_{0}}{r^{2}}=\frac{2.25 \times 0.0259 \times 72}{30^{2}}=0.00466
\end{gathered}
$$

AAiT

## INTERFERENCE OF WELLS

- The combined drawdown at a point is equal to the sum of the drawdowns caused by individual wells.
- Reduced yield for each of the wells.


AAiT
Water Supply \& Urban Drainage By Zerihun Alemayehu

## Resultant drawdown



## PUMPING AND RECHARGING WELLS



AAiT
Water Supply \& Urban Drainage By Zerihun Alemayehu

## Well construction

- Well construction depends on
- the flow rate,
- depth to groundwater,
- geologic condition,
- casing material, and
- economic factors
- Shallow and deep well construction


AAiT
Water Supply \& Urban Drainage By Zerihun Alemayehu

## SHALLOW WELL CONSTRUCTION

- Shallow wells are less than 30 m deep - constructed by
- digging,
- boring,
- driving, or
- jetting methods.


## SHALLOW WELL CONSTRUCTION

- Dug wells: excavated by hand and are vertical wells.
- diameter $>0.5 \mathrm{~m}$ and depth $<15 \mathrm{~m}$.
- Lining and casing :concrete or brick.


AAiT $\begin{gathered}\text { Water Supply } 8 \text { biban } D \\ \text { By Zeirinu A Alemayenu }\end{gathered}$


## SHALLOW WELL CONSTRUCTION

- Driven wells: a series of pipe lengths driven vertically downward by repeated impacts into the ground.
- diameters 25-75 mm
- Length below 15 m .



## SHALLOW WELL CONSTRUCTION

- Bored wells: constructed with hand-operated or powerdriven augers.
- Diameters of 25 to 900 mm
- depths up to 30 m



## SHALLOW WELL CONSTRUCTION

- Jetted wells: a high-velocity stream of water directed vertically downward, while the casing that is lowered into the hole conducts the water and cuttings to the surface.
- Small-diameter holes, up to 10 cm,
- depths up to 15 m
- useful for observation wells and well-point systems for dewatering purposes.
AAiT Water Supply \& Urban Drainage
A A Water Supply \& Urban D



## DEEP WELL CONSTRUCTION

- Deep wells constructed by percussion (cable tool) drilling or rotary drilling methods.
- Percussion drilling: regular lifting and dropping of a string of tools, with a sharp bit on the lower end to break rock by impact.
- for consolidated rock materials to depths of 600 m .

AAiT $\begin{gathered}\text { Water Suppop \& Urban Drainage } \\ \text { Bazerinon }\end{gathered}$ By Zerihun Alemayehu

## PERCUSSION DRILLING



AI Water Supply \& Urban Drainage By Zerihun Alemayehu

## DEEP WELL CONSTRUCTION

- Rotary method: consists of drilling with a hollow, rotating bit, with drilling mud or water used to increase efficiency. No casing is required with drilling mud because the mud forms a clay lining on the wall of the well. Drilling mud consists of a suspension of water, bentonite clay, and various organic additives.
- A rapid method for drilling in unconsolidated formations
- Air rotary methods use compressed air in place of drilling mud and are convenient for consolidated formations.
- Drilling depths can exceed 150 m


## HYDRAULIC ROTARY DRILLING




[^0]:    AIT Water Supply \& Urban Drainage
    By Zerihun Alemayehu

