COLLECTION AND DISTRIBUTION OF WATER

By Zerihun Alemayehu

AAiT

Collection and Distribution of Water

- Deals with the transport of water from the source through the treatment plant to the consumers.
- It requires
- intake structures,
- transmission lines,
- distribution pipe networks and
- other essential accessories.

AAiT

Surface water Intakes

- Floating intakes
- Submerged intakes
- Tower intakes
- Shore intakes
- Pier intakes
 By Zerihun Alemayehu

Reservoir Intake

AAiT

Tower Intake

 By Zerihun Alemayehu

Submerged Lake Intake

AAiT

Intake Structures

Figure: an example of a lake intake

locating the positions of intakes

- Avoid wastewater discharge points and pollution hazard
- enable withdrawal of water from a range of levels
- Magnitude and direction of stream or current velocities should not affect the function and stability of the intake structure.
- Reliable access roads and power sources should be available
- should be near to treatment plant
- Should not interfere with navigation requirements,
- major environmental impacts should be avoided

Design Criteria for intake structures

- Design capacity = Q max-day
- Intake velocity should be $\leq 8 \mathrm{~cm} / \mathrm{s}$
- vertical positions intake ports should be such that good quality water is withdrawn.
- Locate the top intake port at a distance not less than 2 m from the normal water level and the bottom port at least 1 m above the bottom.

AAiT

Intake design

- Volume of sump \rightarrow detention time. A detention time of at least 20 min is recommended.
- At least two sumps - to avoid interruption of service.
- Height (with a freeboard about 0.5m)
- Location of the bottom of the sump should be > 1.5 m below the lowest stream level or $>1 \mathrm{~m}$ below stream bed.

AAiT By Zerihun Alemayehu

Example 1: River Intake design

- Given the following information proportion a suitable river intake.
- Daily demand $5000 \mathrm{~m}^{3}$
- Pump capacity: $50 \mathrm{l} / \mathrm{s}$ (working $8 \mathrm{hr} /$ day)

AAiT

Example 1 Solution

- Capacity of each pump daily $=8 \times 3600 \times 50 / 1000=1440 \mathrm{~m}^{3}$
- Number of pumps $=5000 / 1440=3.47 \cong 4$
- Hourly flow of each pump $=5000 /(4 \times 8)=156.24 \mathrm{~m}^{3} / \mathrm{h}$
- Take detention time, $\mathrm{T}_{\mathrm{d}}=20 \mathrm{~min}$
\rightarrow capacity $=T_{d} \times Q=(20 / 60) \times 156.24=52.08 \mathrm{~m}^{3}$

Example 1 Solution

- Effective height of sump $=6.6+1.5=8.1$
- Free board = 0.5
- Total sump height $=8.6 \mathrm{~m}$
- If we use circular sump diameter $=2.86 \mathrm{~m}$

Pipelines and appurtenances

The selection of pipe materials is based on

- carrying capacity
- strength
- ease of transportation and handling
- availability
- quality of water
- cost (initial and maintenance)
 By Zerihun Alemayehu

Pipelines and appurtenances

- Cast iron pipes:
- highly resistant to corrosion, strong but brittle,
- easy jointing, withstanding high internal pressure, long life
- very heavy and difficult to transport

AAiT

Pipelines and appurtenances

- Steel pipe:

- strong, very light weight and can withstand higher pressure than cast iron pipes. - cheap, easy to construct and can be easily transported
- cannot withstand external loads, affected by corrosion and are costly to maintain.

[^0]
Pipelines and appurtenances

- Cement-lined cast iron pipes:
- cement protect against corrosion.
- very small coefficient of friction than unlined cast iron pipes.

AAiT

Pipelines and appurtenances

- Plastic pipes:
- corrosion resistant , light weight and economical.
- Rigid (unplasticized) uPVC is stronger and can withstand much higher pressure for a given wall thickness.

AAT Water Supply \& Urban Drainage By Zerihun Alemayehu

Pipelines and Appurtenances

- Valves:
- to isolate segments of a pipeline, to regulate rate of flow, to control pressure, and to allow release or entry of air from pipe system.
- Factors considered in the selection of valves:
- include purpose and operation,
- capacity required,
- head loss and rate of flow,
- cost,
- availability, etc.

AAiT

Pipelines and Appurtenances

- Shutoff valves:
- to stop the flow of water through a pipeline
- spacing from 150 to 370 m
- a minimum of three of the four pipes connected at a junction are valved.
- fire hydrant, in inlet, outlet, and bypass lines
- Gate valves and butterfly valves

AAT Water Supply \& Urban Drainage By Zerihun Alemayehu

Pipelines and appurtenances

- Check valves:
a semiautomatic device and permits water flow only in one direction.
- in the discharge pipes of centrifugal pumps \rightarrow prevent backflow
- in conjunction with altitude valves

AAiT

Valve Clapper

Pipelines and appurtenances

- Altitude valves:
- to automatically control the flow into and out of an elevated storage tank or standpipe to maintain desired water level elevations.
- include double-acting sequence valve, single-acting
 type, or differential altitude valve

AAiT waie suppp \& urana Drainage By Zerihun Alemayehu

Pipelines and appurtenances

- Air-release and vacuum valves:
- Air-release valves installed at high points of distribution piping, in valve domes, and fittings, and in discharge lines from pump to discharge the trapped air.
- Vacuum valves are used to protect pipelines from collapse as they are emptied, by allowing air to enter the pipes.

AAiT

Pipelines and appurtenances

- Pressure reducing valves (PRV). :

Pipelines and appurtenances

- Pressure sustaining valves (PSV) :

Distribution systems

- Depending upon the level of the source of water and the city, topography of the area, and other local considerations,
- Gravitational system,
- Pumping without storage, and
- Pumping with storage.

By Zerihun Alemayehu

Distribution systems

- Gravitational system:
- action of gravity without any pumping
- most economical and reliable
- for cities situated at foothills

AAiT

Distribution systems

- Pumping without storage:
- treated water is directly pumped into the distribution mains without storing
- High lift pumps \rightarrow operate at variable speeds \rightarrow to match variable water demand
- Disadvantageous (power failure) \leftarrow no reserve flow

AAiT Water suppy y uran Dratinge By Zerihun Alemayehu

Distribution systems

- Pumping without storage:

AAiT

Distribution systems

- Pumping with storage:

- treated water is pumped at a constant rate \rightarrow stored in elevated distribution reservoir \rightarrow distributed to the consumers by the action of gravity
- excess water during low demand period gets stored in the reservoir \rightarrow supplied during high demand periods.
- pumps work at uniform rate \rightarrow high efficiency
- quite reliable (even during power failure)

AAiT Water supppy u uman Dratinge By Zerihun Alemayehu

Distribution systems

- Pumping with storage:

Layout of distribution systems

- Pipe networks :
- Primary or arterial mains
- from the pumping stations and from storage facilities to the various districts of the city.
- valved at intervals of not $\leq 1.5 \mathrm{~km}$
- Secondary lines or Sub-mains
- run from one primary main to another
- located at spacings of 2-4 blocks
- Small distribution mains or branches
- Supply water to every consumer and to the fire hydrants
 By Zerihun Alemayehu

Layout of distribution systems

- layout of distribution pipes generally follows the road pattern
- four types of pipe network layouts -
- dead end system or branch system,
- gridiron system,
- ring system, and
- radial system.

AAiT

Layout of distribution systems

- Dead end system

- solved easily
- Lesser number of shut-off valves
- Shorter pipe lengths and the easy to lay pipes
- cheap and simple and expanded easily
- dead ends \rightarrow prevent circulation of water
- Problematic if a pipe is damaged

AAiT

Layout of distribution systems

- Gridiron systems
- Discharge, friction loss and pipe size is less
- Not problematic if a pipe is damaged
- No dead ends \rightarrow allows circulation of water
- Good for fire fighting
- more pipelines and shut-off valves
- high cost of construction
- design is difficult and expensive

AT $\begin{aligned} & \text { Water Supply \& Urban Drainage } \\ & \text { By Zerihun Alemayehu }\end{aligned}$ By Zerihun Alemayehu

Layout of distribution systems

- Ring systems:

- closed ring, circular or rectangular
- suitable for well-planned towns and cities
- Generally at high demand areas
- Not problematic if a pipe is damaged
- No dead ends \rightarrow allows circulation of water
- Good for fire fighting
- more pipelines and shut-off valves
- high cost of construction
- design is difficult and expensive

AAiT

Layout of distribution systems

- Radial systems

- For city or a town having a system of radial roads emerging from different centers
- distribution reservoirs at these centers
- From mains \rightarrow pumped into the DRs placed at different centers and then to the service areas.
- ensures high pressure and efficient water distribution

AAiT

[^0]: By Zerihun Alemayehu

